УЗО: устройство, виды, подключение с землей и без, причины срабатывания

Устройство защитного отключения (УЗО) – описание

Многие люди слышали о том, что существует устройство защитного отключения – УЗО, но, что такое УЗО, для чего оно нужно в электрике, какие функции должно выполнять и можно ли вообще его не использовать в сети, знает не так много человек.

Для того, чтобы получить полное представление о том, что такое узо в электрике, о его функциях, устройстве, принципе работы нужно работать в области электрики, иметь диплом, но общие принципы действия и описание этого устройства сможет понять любой человек.

В большинстве квартир и домов не применяется и не применялось раньше УЗО, поэтому многие и не знают для чего его устанавливать, как оно работает.

Если говорить языком, принятым среди электриков, то УЗО, или устройство защитного отключения, представляет собой механический коммутационный прибор, служащий для автоматического прерывания цепи при превышении тока небаланса заданного значения, возникающего при определенных условиях.

Разные модели УЗО уже довольно давно продаются на рынке, многие профессионалы отлично знакомы с принципом их устройства, работы и активно применяют их при построении электрической проводки. Но многие электрики, хозяева домов и квартир, которые сами занимаются монтажом электрической системы не зная о преимуществах применения УЗО пренебрегают этим мощным средством предназначенным для защиты.

УЗО отлично защищает людей от поражения электричеством в случаях когда произошло нарушение изоляции, при случайных прикосновениях к токопроводящим неизолированным частям различного вида электрического оборудования и защищает имущество от теплового воздействия тока.

Самым вероятным местом поражения током в доме или квартире является кухня и ванная, где установлено очень большое количество электрических приборов, есть естественные заземлители – газовые, водопроводные трубы, мало свободного места и повышенная влажность воздуха.

Что понимается под выражением «утечка тока»? Под этим выражением понимается любой ток проходящий мимо электропроводки или мимо подключенных в сеть приборов. Вот как раз на эту утечку тока и реагирует УЗО, если ток пошел мимо электропроводки или электроприбора УЗО срабатывает и отключает сеть.

Токи утечки обычно имеют малые значения, поэтому защита от короткого замыкания и от перегрузки, которую обеспечивают обычные автоматические выключатели, на токи утечки не реагируют. Как видим, УЗО защищает от пожара, возникающего при замыкании при воспламенении тлеющей изоляции, и от поражения током людей.

Практически каждый человек за свою жизнь подвергался удару током в домашней сети напряжением 220 вольт. Этот ток составляет примерно 4-5 миллиампера, а если бы сила тока была большей, то опасность для здоровья и жизни значительно увеличилась.

Чтобы человека ударило током не обязательно нужно ковыряться в розетке или лезть в распределительный щит, достаточно просто дотронуться до стиральной машинки или холодильника, плойки и других приборов. Но почему так происходит?

Ответ простой – в том случае если в любом электрическом приборе нарушается изоляция токоведущих проводов, они начнут пропускать ток на корпус. То есть корпус прибора окажется под напряжением, а это все равно, что прикоснутся к оголенному проводу.

При прикосновении к такому прибору возникает ток замыкания с землей и если прибор не имеет заземления, то током ударит человека.

В большей части домов и квартир нет возможности заземлить корпуса электрических приборов, это не предусмотрено конструкцией, схемой проводки. От такого удара не сможет защитить никакой супер автоматический выключатель, установленный в щитке.

Гарантию от поражения током в таких случаях дает только применение более надежного и совершенного прибора, каким и является УЗО.

УЗО – это прибор, защищающий от токов утечки путем отключения сети в случае их появления. В случае, когда произойдет выше описанная ситуация с повреждением изоляции какого-либо прибора, то по телу человека, который замыкает цепь фаза-земля ударит током.

Но поскольку сила тока утечки не очень большая, в сравнении с номинальным током, то обычные автоматы этого не чувствуют и не отключатся. А человек в тоже время может и погибнуть при определенных условиях. УЗО, в отличии от автоматов, сразу среагирует на возникновение тока утечки и моментально разорвет цепь.

Что такое узо в электрике

Какие бывают типы УЗО и дифференциальных автоматов по роду утечки тока?

В электросхемах используются различные типы токов, поэтому и защитные устройства принято подразделять на классы:

  1. Тип АС. Это распространенный класс приборов, которые имеют бюджетную стоимость, поэтому часто используются в квартирах и загородных домах. Они рассчитываются для утечки переменного тока, на котором функционирует большая часть бытовых приборов.
  2. Тип А. Позволяет распознать утечку как переменного, так и постоянного тока. В последние годы производители начали выпускать устройства, адаптированные именно под такие УЗО. Здесь используются импульсные блоки питания для регулировки мощности. Поскольку это более надежные устройства, они стоят немного дороже предыдущих.
  3. Тип B. Эти УЗО тоже реагируют на утечку любого тока. При этом они часто используются лишь на производственных объектах, в местах общественного пользования. Устанавливать их в квартиру не имеет смысла.

Маркировка, по которой определяют класс, находится на корпусе прибора

УЗО-ДМ

На сегодняшний день такой тип бытовых защитных устройств (дифференциальных механических) является самым распространенным. Любое УЗО-ДМ (которое как раз из-за распространенности принято называть просто УЗО) работает по принципу:

  1. В фазном и нулевом проводниках токи без утечки возбуждают в ферритовом кольце магнитные потоки Ф1 и Ф2, которые равны по величине, но имеют противоположную направленность (возбуждение происходит согласно Правилу Буравчика, известного каждому по школьной программе физики). В результате эти потоки подавляют друг друга, а результирующий магнитный поток в сердечнике становится равным нулю. И ЭДС вторичной обмотки, намотанной на феррит, также равна 0.
  2. Если появляется утечка (допустим при прикосновении к неисправной электроустановке), один из токов становится больше, а в феррите появляется магнитный поток, наводящий ЭДС во вторичной обмотке.
  3. Под током, идущим со вторичной обмотки, электромагнит тянет защелку контрактуры размыкателя, после чего размыкаются под действием пружины контакты.
  4. Работоспособность УЗО проверяется использованием кнопки «тест», создающей искусственно дисбаланс токов в устройстве. После проверочного срабатывания УЗО возвращается в исходное положение кнопкой самофиксации.

Важно: Кнопкой «тест» нужно проверять установленное УЗО ежемесячно, а также при каждом случае повторного включения

УЗО без земли

И все-таки, каким образом можно обезопасить систему TN-C? Существуют ли способы поставить в этом случае УЗО? Чтобы получить исчерпывающую информацию, следует внимательно изучить п 7.1.80 и сопутствующие ему в ПУЭ. Суммировав полученные сведения, можно составить руководство к действию:

  1. В квартиру с проводкой TN-C недопустимо ставить общее УЗО или дифавтомат.
  2. Потенциальных потребителей следует обезопасить с помощью отдельных УЗО.
  3. Защитные проводники розеток/розеточных групп в таком жилье обязательно должны быть заведены на входную нулевую клемму УЗО. Причем кратчайшим путем.
  4. Возможно каскадное подключение УЗО, при условии, что верхние устройства (те, что ближе к электровводу) чувствительнее оконечных.
  5. В квартирах с повышенным уровнем пожароопасности обязательно должны быть в наличии индивидуальные потребительские УЗО, подключенные по определенной, рекомендованной специалистами схеме. Однако допустимо здесь же поставить и общее пожарное УЗО, у которого будет 100 мА разбаланса, а номинальный ток окажется на ступень выше, нежели у защитных устройств (вне зависимости от тока отсечки автомата).

Работа УЗО без заземления

Как известно, в старых домах советской постройки квартирные электропроводки не имели отдельного нулевого защитного проводника, подключаемого к контуру заземления. Предполагалось, что его функцию исполняет нулевой рабочий проводник (т. н. система электроснабжения TN-C с общими нулевыми рабочим и защитным проводниками). А поскольку во всех изданиях ПУЭ есть запрет на установку в защитных проводниках аппаратов защиты, то 2-полюсные УЗО, разрывающие одновременно и фазу и нуль, также попадают под запрет. Даже последняя 7-я актуальная редакция ПУЭ в п. 7.1.80 подтвердила недопустимость установки УЗО в сетях по системе TN-C. Дело в том, что были зафиксированы случаи поражения электротоком во время их срабатывания.

Причиной этого стала разновременность срабатывания контактов устройств, составляющая единицы милисекунд. Но если первым отключался контакт в нулевом проводе, то при пробое изоляции на корпус бытового электроприбора потребитель оказывался под полным фазным напряжением, так что этих нескольких милисекунд вполне хватало для смертельного поражения.

Для квартир без нулевых защитных проводников устанавливать общеквартирное УЗО недопустимо, но отдельные такие аппараты можно устанавливать в групповые розеточные линии с общим защитным проводником или в линии питания отдельных электроприборов, если защитные проводники розеточных групп или розеток по кратчайшему пути заведены на их входные нулевые клеммы.

В этом случае разрыв внутри УЗО нулевого рабочего провода раньше фазного не приводит к разрыву защитного проводника электроприбора, так как участок защитного проводника от входной нулевой клеммы через розетку и шнур питания электроприбора останутся неповрежденными.

Схема подключения УЗО в однофазной сети

Если посмотреть на схемы электрощитов, входной автомат защиты стоит перед счетчиком, а после счетчика — противопожарное УЗО (на рисунке ниже под цифрой три). На него заводится и ноль, и фаза (на контакты сверху). С выходных клемм нейтраль идет на шину, а фаза на расположенные ниже устройства. Это могут быть УЗО, автоматы или дифавтоматы.

Схема подключения УЗО: пример для однофазной сети

В сложных схемах УЗО ставят и на отдельные группы потребителей. Получается несколько уровней защиты. Это более затратно при монтаже, но более надежно в плане защиты и проще определить «источник» проблем. На схеме выше как реализована такая ступенчатая защита. Есть:

  • противопожарное УЗО на входе,
  • плюс два (7 и 14) на группы потребителей;
  • один дифференциальный автомат (13), к которому подключается  один мощный потребитель (стиральная машина, электроплита или духовка).

Без отдельных защитных устройств (УЗО и автоматов) есть одна группа — освещение в комнатах с нормальными условиями эксплуатации. Как правило, это жилые комнаты. По ГОСТу это допускается, хотя, многие даже на освещение предпочитают ставить защиту. Мало ли что может случиться.

Обратите внимание на подключение нейтрали. Шин три

Одна — под номером 4 — подключена от входного УЗО (3). С нее же идет провод к УЗО 7 и 14. С выхода каждого из них нейтраль подключается на отдельные вторичные шины  — 11 и 18 — и уже с этих шин подается на защищаемые потребители. Если ноль подать на них с шины 4, при появлении тока утечки будет срабатывать как УЗО более низкого уровня, так и входное. Если схема подключения УЗО будет построена по описанному принципу, отключаться будет только аварийная линия.

Критерии выбора трехфазного УЗО

Принцип работы всех УЗО в трехфазной сети одинаковый, но данные устройства отличаются конструкцией и эксплуатационными характеристиками. Поэтому при покупке конкретной модели необходимо учитывать много нюансов.

Чувствительность


Главный эксплуатационный параметр УЗО 3 фазы, отображающий период времени, через который сработает защита. Оптимально, когда чувствительность устройства составляет 0,025 с. За это время электрический ток не успеет вызвать остановку сердца у человека.

УЗО может работать с дополнительным источником питания или без него. В первом случае он непосредственно принимает участие в процессе размыкания электрической цепи. Наличие данного механизма повышает стоимость прибора, но и увеличивает его чувствительность.

При отсутствии дополнительного источника питания УЗО срабатывает, реагируя на дифференциал магнитного поля.

Дифференциал тока


Маркировка УЗО УЗО, предназначенные на 3 фазы, способны регулировать значение дифференциального тока, при котором оно срабатывает. При отсутствии данной функции приборы стандартно реагируют на 5 мА. Такой показатель тока явно указывает на присутствие аварийной ситуации и на потребность в отключении подачи электричества.

Количество клемм

Для трехфазной сети обязательно покупать 4-полюсные УЗО. Они оснащаются 8 клеммами для подсоединения входных и выходных кабелей. Три пары предназначены для подключения рабочей фазы, одна – нуля.

Количество ампер

Чтобы устройство защитного отключения функционировало при любом токе, необходимо выбирать модель, где число ампер существенно выше, чем у автомата.

Принцип работы УЗО

Принцип работы УЗО. — этим вопросом задаются многие.

Как известно из курса электротехники, электрический ток течет из сети по фазному проводу через нагрузку и возвращается обратно в сеть по нейтральному проводу. Это закономерность легла в основу работы УЗО.

Принцип работы устройства защитного отключения основан на сравнивании величины тока на входе и выходе защищаемого объекта.

При равенстве этих токов Iвх = Iвых УЗО не реагирует. Если Iвх > Iвых УЗО чувствует утечку и срабатывает.

То есть, токи протекающие по фазному и нейтральному проводу, должны быть равны (это касается однофазной двухпроводной сети, для трехфазной четырехпроводной сети ток в нейтрали равен сумме токов которые протекают в фазах). Если токи не равны – значит имеется утечка, на которую и реагирует УЗО.

Рассмотрим принцип работы УЗО более детально.

Основным элементом конструкции устройства защитного отключения является дифференциальный трансформатор тока. Это тороидальный сердечник на который намотаны обмотки.

При нормальной работе сети, электрический ток протекающий в фазном и нулевом проводе создает в этих обмотках переменные магнитные потоки, которые равны по величине, но противоположны по направлению. Результирующий магнитный поток в тороидальном сердечнике будет равен:

Как видно из формулы магнитный поток в тороидальном сердечнике УЗО будет равен нулю, следовательно ЭДС в контрольной обмотке наводится не будет, ток в ней, соответственно тоже. Устройство защитного отключения в этом случае не работает и находится в спящем режиме.

Теперь представим что человек коснулся электроприбора который в результате повреждения изоляции оказался под фазным напряжением. Теперь через УЗО кроме тока нагрузки будет протекает дополнительный ток — ток утечки.

В этом случае, токи в фазном и нулевом проводе не будут равны. Результирующий магнитный поток также не будет равен нулю:

Под воздействием результирующего магнитного потока в контрольной обмотке возбуждается ЭДС, под действием ЭДС в ней возникает ток. Ток возникший в контрольной обмотке приводит в действие магнитоэлектрическое реле которое отключает силовые контакты.

Максимальный ток в контрольной обмотке появится тогда когда в одной из силовых обмоток тока не будет. То есть, это ситуация когда человек коснется фазного провода, например в розетке в этом случае ток в нулевом проводе протекать не будет.

Несмотря на то, что ток утечки весьма невелик, УЗО оснащают магнитоэлектрические реле с высокой чувствительностью, пороговый элемент которого способен среагировать на ток утечки 10 мА.

Ток утечки это один из основных параметров по которому выбирают УЗО. Существует шкала номинальных дифференциальных токов отключения 10 мА, 30 мА, 100 мА, 300 мА, 500 мА.

Следует понимать, что устройство защитного отключения реагирует только на токи утечки и не работает при перегрузках и коротких замыканиях. Не сработает УЗО и в том случае, если человек одновременно возьмется за фазный и нулевой провод. Это происходит по тому, что человеческое тело в этом случае можно представить как нагрузку, через которую проходит электрический ток.

Из-за этого вместо УЗО устанавливают дифференциальные автоматы, которые по своей конструкции объединяют одновременно УЗО и автоматический выключатель.

Проверка работоспособности УЗО

Для того чтобы осуществлять контроль исправности (работоспособности) УЗО, на его корпусе предусмотрена кнопка «Тест». при нажатии на которую искусственно создается ток утечки (дифференциальный ток). Если устройство защитного отключения исправно, то при нажатии на кнопку «Тест» оно отключится.

Специалисты рекомендуют производить такой контроль примерно один раз в месяц.

Похожие материалы на сайте:

УЗО-Де

В этой аббревиатуре литера «Е» обозначает не емкость, а электронику. Такое устройство выполняется встроенным или в розетку, или в электроустановку. Токовую разность здесь улавливает чувствительный датчик (магнитодиод или, например, датчик Холла), а микропроцессор улавливает его сигнал, и тиристор размыкает цепь.

УЗО-Де обладает следующими достоинствами:

  • компактностью;
  • высокой чувствительностью;
  • помехоустойчивостью;
  • способностью реакции на ток смещения, независимо от заявления;
  • быстродействием в один полупериод 50 Гц (т.е. 20 мс).

Недостатками же такого устройства являются:

  • высокая стоимость;
  • собственное энергопотребление, пусть и ничтожное;
  • склонность к отказам за счет перебоев в работе электроники.

Как правильно подключать устройства защитного отключения

При подключении устройств защиты от токов утечки необходимо соблюдать несколько базовых правил.

Первое и самое важное. УЗО и дифавтоматы должны эксплуатироваться в сетях с глухозаземленной нейтралью с отдельным заземляющим проводом (трехпроводная или пяти проводная система). При этом корпуса всех электроприемников защищаемых устройствами от токов утеки должны быть надежно заземлены

Заземление может осуществляться через контакты розеток или отдельным проводом «под болт»

При этом корпуса всех электроприемников защищаемых устройствами от токов утеки должны быть надежно заземлены. Заземление может осуществляться через контакты розеток или отдельным проводом «под болт».

Второе. Необходимо следить за правильностью подключения проводов. Ноль должен подключаться к клеммам, помеченным буквой «N», а фазы к фазным клеммам. Это правило, на первый взгляд неочевидное, связано с подключением тестовой кнопки и электронной схемы защиты.

Третье. Нельзя соединять между собой одноименные проводники защищаемые разными УЗО. Такую ошибку часто совершают неопытные электрики, используя общий ноль для нескольких блоков розеток. Такое соединение при подключении нагрузки моментально приводит к срабатыванию защиты.

УЗО-Е (емкостные)

Емкостные УЗО (или УЗО-Е) — это первая попытка создать бытовые УЗО. Они обладают высокой чувствительностью в считанные доли мкА. Выпускаются и по сей день, в том числе мгновенно срабатывающими и равнодушными к заземлению. Однако такие устройства имеют один, зато принципиальный недостаток: поток электронов утечки в них — это следствие возникновения электромагнитного поля, а не его причина. И значит будет наблюдаться высокая чувствительность к любым помехам, вплоть до заискрившего на улице трамвая. Именно поэтому УЗО-Е используются сегодня крайне редко и лишь для защиты специального оборудования и/или для индикации прикосновения.

Место установки

Чаще всего местом подсоединения защиты УЗО является электрощиток. В его корпусе размещаются:

  • прибор учёта электроэнергии;
  • автоматические выключатели;
  • распределительные клеммные колодки и др. устройства.

При наличии электрощитка выполнить подсоединение УЗО можно с применением минимального набора инструментов электрика, который включает:

  • бокорезы;
  • пассатижи;
  • отвёртки разных параметров;
  • маркер.

Иногда при монтаже возникает необходимость в торцевых ключах и электрическом тестере.

Справка! Крепление устройства защиты выполняется на DIN-колодку. В случае если на ней не оказывается свободного места, прикручивается дополнительная деталь.

Схемы подключения УЗО в однофазной сети

Большинство бытовых потребителей питаются по однофазной схеме, где для их электроснабжения используется один фазный и нулевой проводник.

В зависимости от индивидуальных особенностей сети однофазное питание может осуществляться по схеме:

  • с глухозаземленной нейтралью (TT), в которой четвертый провод выполняет роль обратной линии и дополнительно заземляется;
  • с совмещенным нулевым и защитным проводником (TN-C);
  • с разделенным нулем и защитным заземлением (TN-S или TN-C-S, при подключении приборов в помещении отличия между этими системами вы не обнаружите).

Следует отметить, что в системе TN-C согласно требований п 1.7.80 ПУЭ не допускается применение дифференциальных автоматов, кроме защиты отдельных устройств с обязательным совмещением нуля и земли от прибора до УЗО. В любой ситуации при подключении УЗО следует учитывать особенности питающей сети.

Без заземления

Так как далеко не все потребители могут похвастаться наличием третьего провода в своей проводке, жильцам таких помещений приходиться обходиться тем, что есть. Наиболее простой схемой подключения УЗО является установка защитного элемента после вводного автомата и электрического счетчика. После УЗО актуально подключать автоматические выключатели для различной нагрузки с соответствующим током отключения. Заметьте, что принцип работы УЗО не предусматривает отключение токовых перегрузок и коротких замыканий, поэтому их обязательно устанавливают вместе с автоматическими выключателями.


Рис. 1: Подключение УЗО в однофазной двухпроводной системе

Такой вариант актуален для квартир с небольшим количеством подключаемых приборов. Так как при коротком замыкании в каком-либо из них отключение не принесет ощутимых неудобств, а отыскание повреждения не займет много времени.

Но, в случаях, когда используется достаточно разветвленная схема электроснабжения, в ней могут использоваться несколько УЗО с различной величиной тока срабатывания.


Рис. 2: подключение УЗО в разветвленной однофазной двухпроводной системе

В этом варианте подключения устанавливаются несколько защитных элементов, которые подбираются по номинальному току и току срабатывания. В качестве общей защиты здесь подключается вводное противопожарное УЗО на 300 мА, за ним проводится нулевой и фазный кабель до следующего устройства на 30 мА одно для розеток, а второй на освещение, для ванной и детской устанавливается пара агрегатов на 10 мА. Чем меньший номинал срабатывания используется, тем более чувствительной будет защита – такие УЗО сработают при значительно меньшем токе утечки, что особенно актуально для двухпроводных схем. Однако устанавливать чувствительную автоматику на все элементы также не стоит, так как она имеет большой процент ложных срабатываний.

С заземлением

При наличии заземляющего проводника в однофазной системе применение УЗО более целесообразно. В такой схеме подключение защитного провода к корпусу приборов создает путь для утечки тока при нарушении изоляции проводов. Поэтому срабатывание защиты произойдет сразу при повреждении, а не в случае поражения током человека.


Рис. 3: Подключение УЗО в однофазной трехпроводной системе

Посмотрите на рисунок, подключение в трехпроводной системе производится аналогично двухпроводной, так как для работы устройства требуются только нулевой и фазный проводник. Заземляющий подключается только к защищаемым объектам через отдельную шину заземления. Ноль также может подводиться к общей нулевой шине, с нулевых контактов он разводится проводами к соответствующим приборам, подключаемым в сеть.

Как и в двухпроводной однофазной схеме, при большом количестве потребителей (кондиционера, стиралки, компьютера, холодильника и прочих благ цивилизации) крайне неприятным вариантом является зависание всех вышеперечисленных электронных схем с потерей данных или нарушением их работоспособности. Поэтому для отдельных устройств или целых групп можно установить несколько УЗО. Конечно их подключение обернется дополнительными затратами, но сделает отыскание повреждений более удобной процедурой.

Индексы УЗО-Д

В зависимости от назначения УЗО и его устройства, к названию-аббревиатуре прибора могут добавляться определенные индексы. И предварительный выбор защитного приспособления для квартиры или частного дома делается как раз по этим индексам:

  • АС — устройство, срабатывающее от разбаланса переменной составляющей тока, обладающее, как правило, противопожарной функцией, в том числе;
  • А — устройство, реагирующее на разбаланс и переменного, и пульсирующего токов;
  • В — устройство, отвечающее на ток утечки любого вида (это или промышленные «пожарные» УЗО, или УЗО-Де встроенного типа).

Дополнительные индексы, соответственно, свидетельствуют о дополнительных возможностях устройств:

  • S — опция селективного срабатывания УЗО (приборы, обладающие такой опцией, используются в энергоснабжении объектов, запитанных по двум лучам-фидерам с автоматом ввода резерва (АВР);
  • G — УЗО быстрого и сверхбыстрого действия (применяются такие устройства в детских, учебных, а также лечебных заведениях, где недопустимо «проскакивание» даже половины поражающей волны).

Важно: Бытовые УЗО индексируются редко, гораздо чаще их различают по току разбаланса и варианту исполнения

Выбор УЗО по параметрам

После того как схема подключения УЗО готова, надо определяться с параметрами УЗО. Как вы знаете, оно сеть от перегрузок не спасет. И от короткого замыкания тоже. Эти параметры отслеживаются автоматом защиты. Чтобы обеспечить безопасность всей проводки, на входе ставят вводной автомат. После него стоит счетчик, а затем обычно ставят противопожарное УЗО. Оно выбирается специфически. Ток утечки 100 мА или 300 мА, а номинал — тот же что и у вводного автомата или на ступень выше. То есть, если входной автомат стоит на 50 А, УЗО после счетчика ставят либо на 50 А, либо на 63 А.

Противопожарное УЗО выбирают по номиналу вводного автомата

Почему на ступень выше? Потому что срабатывают автоматические защитные выключатели с задержкой. Ток, превышающий номинальный не более чем на 25%, они могут пропускать не менее часа. УЗО на длительное воздействие повышенных токов не рассчитано, и с большой вероятностью оно сгорит. Дом останется без электричества. Но это касается определения номинала противопожарного УЗО. Другие выбираются по-другому.

Номинальный ток

Как выбрать номинал УЗО? Он подбирается по методике определения номинала автомата — в зависимости от сечения провода, на который устанавливается устройство. Номинальный ток защитного устройства не может быть больше максимально допустимого тока для данного провода. Для простоты выбора есть специальные таблицы, одна из них ниже.

Таблица подбора номинала автомата защиты и УЗО

В крайнем левом столбце находим сечение провода, правее есть рекомендуемый номинал автомата защиты. Такой же должен быть и у УЗО. Так выбрать номинал защитного устройства от тока утечки несложно.

Величина тока отключения

При определении этого параметра тоже понадобится схема подключения УЗО. Номинальный отключающий ток УЗО — это величина тока утечки, при котором происходит отключение питания на защищаемой линии. Этот параметр может быть 6 мА, 10 мА, 30 мА, 100 мА, 500 мА. Самый малый ток — 6 мА — используется в США, в европейских странах и у нас их и в продаже нет. Устройства с максимальным током утечки в 100 мА и выше ставят в качестве пожарной защиты. Они стоят перед входным автоматом.

Для всех остальных УЗО этот параметр выбирается по простым правилам:

  • Устройства защиты с номинальным током отключения 10 мА ставят на линии, которые идут в помещения с повышенной влажностью. В доме и квартире это ванная комната, еще может быть освещение или розетки в бане, бассейне и т.д. Этот же ток отключения ставят если линия питает один электроприбор. Например, стиральную машину, электроплиту и т.д. Но если в той же линии есть розетки, нужен больший ток утечки.
  • УЗО с током утечки 30 мА ставят на групповые линии питания. Когда подключено более чем одно устройство.

Это простой алгоритм, основанный на опыте. Есть другой способ, который учитывает не только количество потребителей, но и номинальный ток в зоне защиты, а, вернее, сечение провода, так как именно от этого параметра зависит номинальный ток линии электропитания. Это более правильно, так как объясняет, как подобрать величину тока утечки для общего УЗО, к примеру, а не только для устройств, которые ставят на потребителей.

Таблица подбора номинального тока отключения для УЗО

Надо еще учитывать индивидуальные токи утечки каждого из приборов. Дело в том, что на каждом более-менее сложном устройстве какой-то небольшой ток «утекает». Ответственные производители указывают его в характеристиках. Допустим прибор на линии один, но его собственный ток утечки более 10 мА, ставят УЗО с током утечки 30 мА.

Тип отслеживаемого тока утечки и селективность

Разные приборы и устройства используют ток разной формы, соответственно, УЗО должно контролировать токи утечки разного характера.

  • АС — отслеживается переменный ток (синусоидальная форма);
  • А — переменный + пульсирующий (импульсы);
  • В — постоянный, импульсный, сглаженный переменный, переменный;
  • Селективность. S и G  — с выдержкой по времени отключения (для исключения случайных срабатываний), у G-типа выдержка меньше.

Выбор типа отслеживаемого тока утечки

УЗО выбирается в зависимости от типа защищаемой нагрузки. Если к линии будет подключена цифровая техника, требуется либо тип A. На линии освещение — АС. Тип В, конечно, хорош, но слишком дорог. Его обычно ставят в помещениях с повышенной опасностью на производстве, а в частном секторе или в квартирах очень редко.

УЗО класса G и S ставят в сложных схемах, если есть УЗО нескольких уровней. Этот класс выбирают для «высшего» уровня, тогда при срабатывании одного из «низших», входное защитное устройство не отключит питание.

Причины несрабатывания

Причин, по которым УЗО может не сработать, не очень много. Ниже они рассмотрены более подробно:

  • произошел отказ в отключении поврежденного участка. Самая частая ситуация, которая заключается в том, что появилось очевидное повреждение защищаемой зоны. Также сюда относят и неправильный выбор прибора по входному току;
  • само устройство неисправно. Практически на всех современных аппаратах есть специальная кнопка для тестирования. Если элемент исправен, то он отключается;
  • срабатывание произошло ложно. Часто люди грешат на приборы, которые ложно сработали, и никаких аварийных ситуаций не было, но так бывает очень редко. Искать причину в таком случае нужно в сети, а только потом — в УЗО.


Защитные элементы в щитке Устройство защитного отключения выполняет очень важную функцию по борьбе с пожарами и перегревами, которые их вызывают. Они способны моментально обесточить поврежденный участок сети и обеспечить безопасность людям.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий