План расчета плитного фундамента
А). Поройтесь в ваших разрешительных бумагах и отыщите то самое инженерно-геологическое изыскание, которое мы настоятельно рекомендовали сделать, а не проигнорировать. Ведь именно там точно указано, каков тип почв, да какова глубина залегания грунтовых вод, да как высоко проходит линия промерзания под вашим будущим домом. Собственно, зная тип грунта, по таблице ниже определите удельное давление фундаментной плиты на почву.
(табл. 1)
Оптимальное удельное давление фундаментной плиты на почву
Если дом будет стоять на грунтах красного цвета, лучше всего расчет плитного фундамента все же заказать проектантам.
Потому что на глинистых грунтах высока вероятность значительного увлажнения почвы, и здание может начать «утопать» из-за резкого уменьшения несущей способности почвы весной. В этом случае нужно выполнить и провести сравнительный анализ свайного и плитного фундаментов.
А если дом стоит на супеси, то возможно, лучше все же ставить заглубленный ленточный фундамент. В общем, красная линия в таблице – это повод задуматься – а нужно ли самому считать толщину плитного фундамента?
В). А теперь опять поройтесь в документах, и найдите строительный план дома. Открывайте спецификацию и начинайте считать общий вес строения, возведенного над фундаментом. Даже без учета рояля, хорошо откормленной тещи и камина, на плитное основание будет денно и нощно давить та еще нагрузка… Поэтому вот вам табличка, калькулятор возьмете сами и, приступайте, благословясь…
(табл. 2)
Расчет веса
Если угол наклона вашей крыше почти такой же как в альпийском домике в стиле шале (более 60 градусов), можете снеговой нагрузкой пренебречь.
С). А сейчас сосчитайте массу фундамента (Mф), которая выдержит дом вместе с тещей и роялем. Для этого сначала вычислите практическую удельную нагрузку на дом. Разделите вес строения на площадь фундаментной плиты (Sф). Теперь сравните полученное число с тем, что стоит в табл. 1. Разницу между полученным и табличным значениями умножьте на площадь Sф – вот вам и масса плиты-основания.
D). Плотность железобетона – 2 500 кг/м3, помните? Ну, а дальше, все как физик прописал:
Дано – масса (Mф), плотность (ρ);
Найти – объем (Vф).
Решение очевидно (7 класс средней школы):
Vф= Mф/ρ
Ну, а теперь опять идем к третьеклашке и задаем такую задачку:
Дано – объем (Vф), площадь (Sф) (для вас может и основания дома, но для школьника это параллелепипед);
Найти – высоту (Hф) (для школьника, а для вас – толщину плитного фундамента).
Ребенок (если не круглый двоечник), знает:
V = S x H;
Отсюда Н = V/S.
Ну вот и все. Нашли толщину, теперь округлите ее в большую сторону к ближайшему кратному 5. Это нужно, чтобы заливать было удобней. Впрочем, если вам проще сделать высоту плиты основания 34 см – можете не округлять.
Расчет толщины плиты
Расчет выполняется по СП «Проектирование и устройство оснований и фундаментов зданий и сооружений» и по руководству «Руководство по проектированию плитных фундаментов каркасных зданий и сооружений башенного типа» в два этапа:
- сбор нагрузок;
- расчет по несущей способности.
Сбор нагрузок включает в себя проведение работ по вычислению общей массы дома с учетом веса снегового покрова, мебели, оборудования и людей. Значения для домов из различных материалов можно взять из таблицы.
Тип нагрузки | Значение | Коэффициент надежности |
Стены и перегородки | ||
Кирпич 640 мм | 1150 кг/м2 | 1,2 |
Кирпич 510 мм | 920 кг/м2 | |
Кирпич 380 мм с утеплением 150 мм | 690 кг/м2 | |
Брус 200 мм | 160 кг/м2 | 1,1 |
Брус 150 мм | 120 кг/м2 | |
Каркасные 150 мм с утеплителем | 50 кг/м2 | |
Перегородки гипсокартонные 80 мм | 30-35 кг/м2 | 1,2 |
Перегородки кирпичные 120 мм | 220 кг/м2 | |
Перекрытия | ||
Железобетонные 220 мм с цементно-песчаной стяжкой 30 мм | 625 кг/м2 | 1,2 — для сборных и 1,3 — для монолита |
Деревянные по балкам | 150 кг/м2 | 1,1 |
Крыша по деревянным стропилам | ||
С металлическим покрытием | 60 кг/м2 | 1,1 |
С керамическим покрытием | 120 кг/м2 | |
С битумным покрытием | 70 кг/м2 | |
Временные нагрузки | ||
Полезная для жилых зданий | 150 кг/м2 | 1,2 |
Снеговая | В зависимости от района строительства по п. 10.1 СП «Нагрузки и воздействия». Снеговой район определяется по СП «строительная климатология». | 1,4 |
Важно! В таблице уже учитывается толщина конструкций. Для вычисления массы остается лишь умножить на площадь
Кроме этого, каждую нагрузку необходимо умножить на коэффициент надежности. Он необходим для обеспечения запаса по несущей способности конструкции из бетона и предотвращения проблем при незначительных ошибках строителей или изменениях условий эксплуатации (например, смена назначения здания). Все коэффициенты принимаются по СП «Нагрузки и воздействия».
Для различных нагрузок, коэффициент отличается и находится в пределах 1,05-1,4. Точные значения также приведены в таблице. Для фундамента из бетона по монолитной технологии принимают коэффициент 1,3.
Важно! Если уклон кровли составляет более 60 градусов, снеговую нагрузку в расчете не учитывают, поскольку при такой крутизне ската, снег не скапливается на нем. Общую площадь всех конструкций умножают на массу, приведенную в таблице и коэффициент, после чего, складывая, получают суммарный вес дома без учета фундаментов
Общую площадь всех конструкций умножают на массу, приведенную в таблице и коэффициент, после чего, складывая, получают суммарный вес дома без учета фундаментов.
Основная формула для вычислений имеет следующий вид:
P1= M1/S,
где P1 -удельная нагрузка на грунт без учета фундамента, M1 — суммарная нагрузка от дома, полученная при сборе нагрузок, S — площадь плиты из бетона.
Далее необходимо рассчитать разницу (Δ) между полученным значением и числом, приведенным в таблице выше, в зависимости от типа грунта.
Δ=P-P1
где P — табличное значение несущей способности грунта.
M2 = Δ*S,
где М2 — требуемая масса фундамента (больше этой массы строить фундамент нельзя), S — площадь плиты из бетона.
Следующая формула:
t = (М2/2500)/S,
где t — толщина заливки бетона, а 2500 кг/м3 — плотность одного кубического метра железобетонного фундамента.
Далее толщина округляется до ближайшей большей и меньшей величины кратной 5 см. После выполняется проверка, при которой разница между расчетным и оптимальным давлением на грунт не должна превышать 25% в любую сторону.
Совет! Если при расчете получается, что толщина слоя бетона превышает 350 мм, рекомендуется рассмотреть такие типы конструкции как ленточный фундамент, столбчатый или плита с ребрами жесткости.
Помимо толщины потребуется подобрать подходящий диаметр армирования, а также выполнить расчет количества арматуры для бетона.
Важно! Если в результате расчета у вас получится толщина плиты более 35 см, это указывает на то, что плитный фундамент избыточен в данных условиях, нужно посчитать ленточный и свайный фундаменты, возможно они окажутся дешевле. Если же толщина вышла меньше 15 см, значит здание слишком тяжелое для данного грунта и нужен точный расчет и геологические исследования
§ 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига
Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu — сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.
Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания
При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О — см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а — расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.
Нормативные требования
Сооружение фундаментной ленты мелкой закладки под одноэтажным домом возможно даже на подушке из песка и гравия, это помогает экономить деньги и ускорить производство работ безо всякого риска. Но выполнить такую работу можно только на определенных грунтах:
- несклонных к пучению;
- полностью сухих;
- отличающихся равномерным промерзанием.
Железобетонная лента с мелким заглублением под небольшим частным домом делается шириной 0,3-0,5 м под землей, высота цоколя составляет самое меньшее 0,3 м. Для наибольшей точности работы начинают с разметки, потом копают траншеи, стенки которых должны быть вертикально ровными. Малое заложение позволяет обойтись траншеями глубиной 0,5 и шириной от 0,6 до 0,8 м. Когда выемки выкопаны и выровнены, делается песчаная подушка 200-400 мм. Ее полагается трамбовать, поскольку чем плотнее основание, тем меньше будет со временем просадка всего дома.
Засыпка песка производится послойно, по 150 мм, его требуется перед трамбовкой увлажнить. Для наивысшей механической прочности сверху засыпают гравий с поливкой жидким бетонным раствором.
Чтобы сформировать опалубку, используют отшлифованные с одной стороны доски толщиной 2 см. Вместо них, можно брать еще:
- шифер в виде плоских листов;
- листовой металл;
- фанеру.
Укрепление опалубки производится при помощи распорок и опорных кольев, ее обязательно следует выверять по вертикалям и горизонталям. Изнутри конструкция прокладывается плотным гидроизоляционным материалом. Чтобы необходимая толщина этого материала была меньше, следует подбирать глубину закладки, ориентируясь на уровень и движение подземных вод.
Фундамент в виде ленты для двухэтажного дома из кирпичей кладется в котловане, засыпаемом 0,3 м песка. Так как дом придется оборудовать санузлами, рекомендуется добавить поверх водопроводных и канализационных труб стяжку из цемента и песка толщиной до 0,1 м.
На застывшую стяжку кладут гидроизоляцию, а вот теплоизоляционный слой нужен не всегда. Потом идет каркас, создаваемый из арматурной стальной сети, далее опалубка. Только после этого и можно заливать ленту как таковую. Подошва основания под дом должна обязательно заходить на 200-250 мм глубже, чем промерзающая линия. Дома из пеноблоков легче, чем аналогичные по размеру кирпичные постройки.
Но это не означает автоматически, что можно закладывать фундамент ближе к поверхности. Придется проанализировать все параметры, характеризующие геологическую структуру участка
Дополнительно принимается во внимание тяжесть предусмотренных проектом перекрытий, мебельных изделий, снеговая нагрузка, которая может присутствовать на крыше даже на короткий срок. Среди разных вариантов закладки по глубине следует выбирать тот, что только можно позволить себе, по материальным соображениям. Грунт в разных местностях промерзает на 100-180 см, и в большинстве случаев выбирают заложение до 150 см
Грунт в разных местностях промерзает на 100-180 см, и в большинстве случаев выбирают заложение до 150 см.
Нужно учесть, что даже при использовании сведений геологоразведки и норм СНиП при расчетах позволяет найти только минимально необходимые величины.
Траншеи продумываются и откапываются сразу с резервом под все необходимые слои подсыпки, стяжки и дополнительные конструкции. Относительно легкий дом на грунте, несклонном к пучению, допускается ставить на основание глубиной 600 мм, выполненное в формате плавающей ленты. Такая конструкция должна тщательно рассчитываться, только это позволяет избежать разрушения при подвижках грунтовых масс.
Лента под газобетон должна быть рассчитана не менее тщательно, чем под кирпич или иной тяжеловесный материал. Легкость надземных конструкций обманчива, без тщательных расчетов по прочности и несущей способности опоры они окажутся ненадежными. Проект фундамента следует готовить, максимально гася выталкивающую силу. Для более тяжеловесных стенных материалов она несущественна, а вот облегченные газобетонные блоки легко выталкиваются из почвы.
Если все же сделан именно выбор в пользу заливной опоры, при расчете ориентируются в первую очередь на:
- массу стен и оказываемое ими давление на 1 пог. м;
- массу всех перекрытий;
- тяжесть кровельных материалов и подстилающих конструкций.
Расчет нагрузки в зависимости от типа основания
Фундаменты под забор бывают двух основных типов:
Фундамент ленточного типа
Главным параметром для расчета глубины залегания фундамента является глубина промерзания грунта. Разумеется, что в зависимости от климатической зоны этот показатель существенно меняется, но для легкого забора, изготовленного из дерева, профнастила или других современных материалов, этот показатель практически фиксирован – 50 см. Но следует помнить, что это глубина без учета верхнего (плодородного) слоя, толщина которого 10-15 сантиметров.
Расчет площади основания фундамента направлен на определение оптимальной пропорции, которая позволит достигнуть максимальной устойчивости возводимой конструкции. Ошибки в расчетах могут привести либо к «осадке» конструкции, либо к ее «выталкиванию» пучинистыми грунтами.
S = /, где:
- S — площадь основания фундамента;
- k(n) – коэффициент надежности (как правило, принимается 1,2, т.е. запас площади составляет 20%);
- F – суммарная расчетная нагрузка на основание грунта. Равняется суммарному весу фундамента и забора с учетом максимальных ветровых нагрузок;
- k(c) – коэффициент, характеризующий условия работы, учитывающий наиболее вероятную работу материалов в конструкциях. Для конструкций из бетона равняется 1,1;
- R — показатель расчетного сопротивления грунта, берется из таблицы.
Показатель расчетного сопротивления основных типов грунта | ||
Расчетное сопротивление грунта (кг/см 2 ) | ||
Плотный | Средней плотности | |
Гравелистый и крупный песок независимо от влажности | 4,5 | 3,5 |
Песок средней крупности независимо от влажности | 3,5 | 2,5 |
Маловлажный мелкий песок | 3,0 | 2,0 |
Очень влажный и насыщенный водой мелкий песок | 2,0 | 2,5 |
Твердая глина | 6,0 | 3,0 |
Пластичная глина | 3,0 | 1,0 |
Крупнообломочный грунт | 6,0 | 5,0 |
Нагрузка на грунт от фундамента и конструкций забора рассчитывается исходя из веса материалов, из которых они изготовлены. К примеру, вес одного кубического метра бетонного фундамента составляет от 2200 до 2500 килограмм.
Ветровую нагрузку на конструкцию забора следует рассчитывать исходя из стандартных для конкретной территории показателей, руководствуясь положениями строительных норм и правил (СНиП 2.01.07-85).
Фундамент столбчатого типа
В случае, если вместе с деревянным забором устанавливаются тяжелые цельнометаллические ворота, целесообразнее параметры фундамента для ограждения и ворот рассчитать отдельно.
Расчет фундамента на естественном основании по деформациям
Строения в процессе эксплуатации деформируются, и причиной этому могут быть вертикальные деформации оснований, на которых они построены. Такие деформации разделяют на осадки и просадки.
Схема внецентренно нагруженного свайного фундамента.
Коренное изменение сложившегося строения грунта называют просадкой. Причиной просадки может быть уплотнение почвы при замачивании. Рыхлый грунт может уплотниться при сотрясении. Иногда он начинает выпирать из-под подошвы фундамента. Таких изменений фундаментов по деформациям допускать нельзя. Вероятность их появления необходимо установить до начала строительства.
Если происходит уплотнение прочных грунтов из-за веса строения, в результате чего происходит , такую деформацию оснований называют осадкой. Как правило, в результате осадки в элементах здания трещины не появляются. Если грунт оседает по-разному под каждой из частей здания, это и может явиться причиной появления трещин в отдельных элементах его конструкции.
Причиной неравномерности осадки грунта могут быть:
- разница плотностей и как следствие, неодинаковая их сжимаемость;
- разное расширение его слоев в результате сезонных промерзаний и оттаиваний;
- неодинаковая мощность пластов;
- различные нагрузки на грунт со стороны строения, что приводит его к разным напряженным состояниям.
Существуют две причины, из-за которых необходимо выполнять расчет оснований по деформациям. Одной из них являются близко стоящие от строительства сооружения, существенно отличающиеся по весу.
Схема не симметричного свайного фундамента с определением смещенного центра тяжести.
Второй причиной осадки фундаментов могут быть слабые грунты. Это насыпные почвы, рыхлые пески в глинистых типах, находящихся в текучем состоянии, грунты с большим содержанием органических остатков. В таких видах возможна деформация фундамента.
Расчет оснований состоит в проверке выполнения неравенства:
S ≤ f, (2)
где S – расчетная абсолютная величина осадки; f – предельно допустимая осадка.
Предельные осадки, при которых не выполняется условие (2) могут быть причиной для формирования искусственного основания.
Значение S определяют путем проведения по установленной методике испытаний на сжимаемость в различных местах строительной площадки. В результате находят максимальное Еmax и минимальное Еmin значение модуля сжимаемости.
Основание считается таким, что его осадка мало зависит от сжимаемости, если Еmin = 200 кг/см², иначе необходимо проверить выполнение еще двух условий:
1,8≤ Еmax/Еmin≤ 2,5 (при 200> Еmin ≥ 150 кг/см²);
1,3≤ Еmax/Еmin≤ 1,5 (при 150> Еmin ≥ 75 кг/см²);
Существуют специальные таблицы, по которым определяют абсолютные значения деформации f. Не приводя таблицы, следует указать, что в зависимости от типа стен и отношения длины ленточного фундамента к высоте стены, максимальная осадка f изменяется от 8 до 15 см.
При отношении Еmax/Еmin
Для строительства дома такие сложные расчеты выполнять самостоятельно нецелесообразно. Допущенная по неопытности ошибка может обернуться существенными материальными затратами.
Функции онлайн калькулятора
Онлайн калькулятор монолитного плитного фундамента помогает рассчитать такие параметры:
- габариты опалубки;
- объем кубов бетона;
- диаметра арматуры.
Система предлагает внести уже известные показатели, на основании которых и производятся вычисления. Все расчеты позволят получить приблизительные результаты, ведь вводимые пользователем данные не всегда корректны.
Погрешность в расчетах искусственного интеллекта присутствует, но она будет определенно меньше, чем у человека, выполняющего такие действия впервые. С максимальной точностью просчитать все показатели сможет только эксперт-строитель, предварительно изучив местность и выслушав пожелания заказчика.
Особенности выполнения расчетов толщины монолитной плиты
Толщина монолитного плитного фундамента рассчитывается на основании трех параметров:
- Расстояние между верхним и нижним уровнем арматурного каркаса.
- Диаметр прутьев арматуры, используемых для каркаса.
- Толщина бетонного слоя над армирующим каркасом и под ним.
Зная показатели этих характеристик, можно без труда определить толщину фундаментной плиты. Идеальным считается значение, равное 20-30 см, но следует знать, что такое значение может использоваться при строительстве на твердом и устойчивом грунте.
Помимо основных критериев при расчете толщины плитного фундамента учитывается этажность основной конструкции и материал, который будет использоваться для возведения стен. Большое значение имеет также тип грунта на участке и величина временных нагрузок, к которым можно отнести снег, мебель и людскую проходимость.
Для дома на участке с сильным промерзанием грунта толщина плиты существенно возрастает. Если сравнивать плиту под дом из пенобетонных блоков и кирпичное строение, то для второго варианта следует увеличить высоту плиты на 5-6 см.
Второй этаж кирпичного дома требует увеличения толщины плиты на 40 см, для двухэтажного пенобетонного строения высоту плитного фундамента добавляют на 35 см.
Пример расчета
Вычисления включают в себя следующие шаги:
- подбор геометрических параметров;
- расчет бетона на фундамент;
- и расчет армирования ленточного фундамента.
Пример расчета геометрии
Для расчета фундамента возьмем двухэтажный кирпичный дом с наружной стеной 510 мм, суммарная высота наружной стены —4,5 м. Внутренних стен нет. Он расположен в г.Москва, грунт на участке — среднезернистый песок (R = 5 кг/см2). Перекрытия (2 шт., над подвалом и над первым этажом) из плит ПК, перегородки гипсокартонные высотой 2,7 м и общей протяженностью 20 м. Высота этажа — 3 м, размеры в плане — 6х6 м. Вода на участке залегает низко, поэтому принято решение строить заглубленный фундамент высотой 2 м. Крыша четырехскатная с покрытием из металла. Наклон ската — 30°.
Пример расчета начинается со сбора нагрузок в форме таблицы.
Тип нагружения | Вычисления |
Фундамент монолитный (предварительно шириной 0,6 м по периметру здания, равному 36 м) | 36м*0,6м*2м*2500кг/м3*1,3 = 140400 кг |
Стена из кирпича | 6м*4,5м*4шт.*920 кг/м2*1,3 = 129168 кг |
Гипсокартонные перегородки | 20м*2,7м*30кг/м2*1,1 = 1782 кг |
Перекрытия | 2шт*6м*6м*625 кг/м2*1,2 = 54000 кг |
Крыша | 6м*6м*60кг/м2*1,05 = 2268 кг 2268 кг/cos30° = 2607 кг |
Полезное | 2 перекрытия*36м2*150кг/м2*1,2 = 12960 кг |
Снеговое | 36м2*180кг/м2*1,4 = 9072 кг |
Сумма | 349 989 кг |
В = Р/(L*R) = 349989кг/ (36000см*5кг/см2) = 1,94м. Конструкция рассчитана.
Рассчитанный размер ширины округляем до 2 м. Для ширины по всей высоте это много, достаточно будет 50 см под стены 51 см. Свес 1 см допускается (максимальный составляет 4 см в одну сторону). Ширина подошвы больше той, которая использована в расчете, но по всей высоте размер меньше первоначального. По этой причине нет необходимости переделывать вычисления с новой массой подземной конструкции.
Подсчет бетона
Перед покупкой смеси должна быть вычислена ее необходимая кубатура. Для этого потребуется просто найти объем ленты. К количеству бетона для ленточного фундамента рекомендуется прибавить запас в 5—7%.
Армирование
Арматура для ленточного фундамента нужна, чтобы скомпенсировать изгибающие воздействия. Какую арматуру использовать правильно для армирования? Здесь все зависит от высоты подземной части и ее длины. Чтобы понять, какая арматура нужна в качестве рабочей, делают простые вычисления. Расчет количества арматуры выполняется так, чтобы ее суммарное сечение составляло 0,1% от сечения бетонной конструкции. При этом есть минимальные конструктивные требования:
- Какая арматура нужна для конструкции с длиной стороны менее 3 м? Ответом будет сечение 10 мм.
- При длине стороны более 3 м потребуется 12-ти миллиметровая арматура для фундамента.
Армирование фундамента компенсирует изгибающие воздействия Расчет выполняют приблизительно. Рассчитать арматуру более точно сможет только профессионал. Шаг рабочих прутов подбирают так, чтобы они были распределены равномерно. Желательно использовать одинаковый шаг, располагая элементы в нижней части ленты, наверху и посередине.
Дальше требуется рассчитать количество для хомутов. Они соединяют рабочие детали каркаса между собой. Раскладка арматуры в ленточном фундаменте предполагает наличие вертикальных и горизонтальных хомутов. Их изготавливают из стержней диаметром 8 мм. Шаг назначают в пределах 20—30 см. В углах шаг уменьшают в два раза.
Вычисление количества арматуры для ленточного фундамента помогает сэкономить время и деньги. Зная точное количество арматуры для каждого диаметра и ее шаг можно легко выполнить усиление ленты и закупить материалы.
На нашем сайте вы можете воспользоваться простым онлайн-калькулятором для расчета ленточного фундамента.