Несущая способность буронабивной сваи – таблица характеристик грунта
Как видно из этих формул, многое зависит от сопротивления грунта.
Буронабивные фундаменты устраивают на осадочных породах – песках, глинах и т. д. Приведем значения сопротивлений для разных пород.
Сопротивление по основанию:
- глины – от 24 тонны на метр квадратный (мягкопластичные сильнопористые) до 90 (твердые малопористые);суглинки – от 21 до 47;супеси – от 33 до 47;пески пылеватые среднеплотные – от 20 (влажные) до 30 (маловлажные);пылеватые плотные – 30-40;мелкозернистые – 25-30 и 37-45 соответственно;средние – 40 и 55;крупнозернистые – 50 и 70;гравий – 45-75 (в зависимости от минерального состава);щебень с песком – 90.
Боковое сопротивление зависит от глубины залегания слоя. Например, для глин на глубине полметра оно варьируется от 2,8 (твердые глины) до 3 (мягкие), а на глубине 3 метра – 0,8-4,8.
По желанию заказчика мы полностью выполним все работы под ключ, начиная с геологических исследований и заканчивая устройством ростверка.
Способы вычисления несущей способности по различным параметрам
Несущая способность сваи зависит от целого ряда параметров. Главные из них – материал опоры и виды грунта, с которыми она контактирует при заглублении. Опираясь на данные характеристики можно легко рассчитать необходимое количество элементов свайного фундамента и их геометрические параметры.
Свайные фундаменты
Среди получивших наибольшее распространение в частном домостроении можно выделить следующие свайные фундаменты:
- На винтовых сваях;
- На забивных опорах;
- С помощью буронабивных свай.
Каждый вариант хорош в тех или иных случаях и может использоваться при строительстве зданий различной конструкции и этажности.
Расчет фундамента на винтовых сваях
Винтовые сваи представляют собой стальные трубчатые опоры, оснащенные в нижней части лопастями, облегчающими процесс внедрения в грунт. Для строительства домов используют элементы диаметром 133, 108 и 89 мм. Более тонкие сваи можно применять для монтажа легких конструкций типа беседок и террас.
Фундамент на винтовых сваях
Несущая способность сваи с лопастями зависит от следующих параметров опоры:
- Диаметра трубы;
- Длины трубы, погруженной в почву;
- Диаметра лопастей, распределяющих конечную нагрузку на грунт.
Даже трубы самого большого диаметра не позволяют использовать их для строений из таких сравнительно тяжелых строительных материалов, как кирпич и бетонные стеновые блоки. Для соответствия нагрузке дома даже на таких мощных почвах, как глиняные шаг установки винтовых свай может составлять 0,3 метра, что невыгодно с точки зрения технологии и экономики строительства.
Особенности фундамента на забивных сваях
Максимально возможная несущая способность забивной сваи позволяет широко использовать подобный вид фундаментов даже при строительстве многоэтажных жилых домов. Это способствует их распространению при возведении конструкций высотой до 40-60 метров.
Применение специализированной строительной техники позволяет использовать опоры, длина боковой поверхности которой может составлять десятки метров. Забитая свая нижним концом опирается на высокопрочные скальные породы, передавая им нагрузку от конструкции дома. Прочность материала опоры достаточна для сохранения ее целостности под такой высокой нагрузкой.
В частном домостроении фундамент на забивных сваях распространен очень слабо. Связано это с высокой стоимостью аренды пневматического забивного оборудования и его операторов. Только в крайних случаях строительные инженеры склоняются в пользу такого вида фундамента для двухэтажных частных домов.
Буронабивные сваи – оптимальный вариант фундамента
Буронабивные сваи аналогичны забивным, но монтаж тела опор осуществляется непосредственно на месте строительства. Для этого в грунте бурится отверстие, в которое опускается полая цилиндрическая опалубка в виде труб. Внутрь устанавливается стальной усиливающий каркас и полость заполняется бетоном. Для увеличения несущей способности сваи возможно изготовление ее нижнего конца в виде полусферического или конического расширения.
Важный аспект – материал, из которого изготовлена опора и способ ее изготовления. Максимальная величина характерна для железобетонных заводских стоек. Несущая способность сваи по материалу в расчетах характеризуется коэффициентами, величина которых определяется по соответствующим таблицам.
Фундамент на буронабивных сваях
В процессе бурения первого или пробного шурфа на месте строительства необходимо как можно тщательнее изучить имеющиеся слои грунта, ибо каждый из видов почв обладает различной несущей способностью сваи. Конкретные цифры по каждому виду почв легко найти в соответствующем ГОСТе, который называется «Грунты. Классификация». Эти величины учитывают, когда определяется несущая способность сваи по грунту.
Буронабивная свая, как и забивная, благодаря плотной посадке в почву нагрузку от конструкции дома передает не только своим нижним концом, но и по всей боковой поверхности. Это отличает их от свайных опор и служит неоспоримым преимуществом. Для более тщательного изучения технологии расчета несущей способности сваи рассмотрим ее на конкретном примере.
Пример расчета сваи по формуле 2
По формуле (1) можно определить диаметр свай и их количество, если известен общий вес, Р строения. Можно определить вес, Р сооружения, которые выдержат сваи, то есть решить обратную задачу.
Решим прямую задачу. Примерный вес строения можно определить, если известна этажность, материалы стен и перекрытий, вес кровли.
Площадь грунта, на которую опирается основание сваи, определим через ее диаметр d:
a периметр сваи равен
подставив (4) и (5) в (2), после элементарных преобразований получим:
Пусть глубина погружения сваи равна 3 м и при этом верхний глинистый слой имеет толщину1,5 м, и нижний слой составляет крупный песок. Пусть коэффициент пористости е≤0,55, и в верхнем слое глина находится в мягкопластичном состоянии, то есть показатель текучести IL=0,6.
По таблице 1 определяем расчетное сопротивление глинистых грунтов, fгл=25(2,5)кПа (тс/м 2 ) и по таблице 2 расчетное сопротивление песчаных грунтов, fпес=85(8,5) кПа (тс/м 2 ). По таблице 4 определяем расчетное сопротивление песчаного слоя Rпес=4100(410) кПа (тс/м 2 ). Подставим эти значения в тс/м 2 в формулу (6).
Fd=π[410d 2 /4+d(2,5·1,5+8,5·1,5)]= π[410d 2 /4+d(2,5·1,5+8,5·1,5)]= = π(410d 2 /4+16,5d).
При диаметре d = 30 см=0,3 м, Fd=44,5 т.
При диаметре d = 20 см, Fd= 23т.
Требуемое количество свай N необходимо определять, проверяя условие:
где Р – вес сооружения.
Понятно, что одновременно с решением прямой задачи можно выполнить расчет размера свай.
Для свай, имеющих в сечении квадратную форму со стороной а, формулу (6) необходимо преобразовать, и она примет вид:
Подводя итог, следует отметить, что выполнен, пожалуй, самый простой расчет. И цель его состояла в определении приблизительного количества свай. Намного сложнее выполнить расчет на воздействие сил морозного пучения. А его также необходимо выполнять. Для такого расчета потребуется определять удельную касательную силу морозного пучения, но это можно выполнить только опытным путем. Поскольку фундамент требует серьезного к себе отношения, то целесообразно воспользоваться услугами специалиста.
Расчет с помощью онлайн-калькулятора
Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.
Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.
Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.
Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.
Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.
Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.
6.3 Расчет буронабивных свай
6.3.1 Расчеты свайных фундаментов и их элементов выполняются в соответствии с общими положениями СП 24.13330.2011, МГСН 2.07-01 [], МГСН 5.02-99 [].
6.3.2 При расчете буронабивных свай из виброштампованного бетона по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы γcb= 1 и коэффициента условий работы, учитывающего влияние способа производства работ при наличии в скважине воды и извлекаемых обсадных труб, γ’cb= 0,9.
6.3.3 Сваю в составе фундамента и одиночную по несущей способности грунта основания следует рассчитывать исходя из условия
(1)
где N — расчетная вертикальная нагрузка, передаваемая на сваю, кН;
Fd — несущая способность (предельное сопротивление) грунта основания одиночной сваи, кН, называемая в дальнейшем несущей способностью сваи;
γ, γn, γk — коэффициенты, принимаемые согласно п. 7.1.11 СП 24.13330.2011.
6.3.4 Несущую способность Fd буронабивной сваи, работающей на сжимающую нагрузку, следует определять по формулам:
а) при объемном виброштамповании укладываемой бетонной смеси
Fd = γc(γcRRA + UΣγcffihi), (2)
где γс — коэффициент условий работы сваи, γc = 1;
γcR — коэффициент условий работы грунта под нижним концом сваи (для песков и супесей γcR = 1,1; для глин и суглинков γcR = 1; в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011);
R — расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое, согласно п. 7.2.7 СП 24.13330.2011;
А — площадь опирания сваи, м2, принимаемая равной:
— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;
— для буронабивных свай с уширением — площади поперечного сечения уширения в месте наибольшего его диаметра;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности сваи (для любого типа грунта γcf = 0,9);
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
б) при вибровтрамбовывании щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой грунта
Fd = γc(γcR1RA + UΣγcffihi), (3)
где γс — коэффициент условий работы сваи, γс = 1;
γcR1 — коэффициент условий работы, учитывающий особенности совместной работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта, принимаемый по таблице ;
R — расчетное сопротивление уплотненного грунта под подошвой буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в забой, кПа, принимаемое по таблице приложения ;
А — площадь опирания сваи, м2, принимаемая равной:
— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;
— для свай-оболочек, заполняемых бетоном, — площади поперечного сечения оболочки брутто;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности сваи, принимаемый:
— при объемном виброштамповании укладываемой бетонной смеси (для любого типа грунта γсf = 0,9);
— в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011 в зависимости от способа образования скважины и условий бетонирования;
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.
Таблица 1 — Значения коэффициента γcR1
Значение коэффициента для пылевато-глинистых грунтов с показателем текучести IL | |||||||
0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | ||
для песчаных грунтов | |||||||
гравелистых | крупных | — | средней крупности | мелких | пылеватых | — | |
Пески средней плотности | — | — | — | 0,8 | 1,0 | 1,1 | — |
Супеси, суглинки и глины | — | — | 0,8 | 0,9 | 1,0 | 1,1 | 1,2 |
Примечания
1 Для промежуточных значений IL значения коэффициента γcR1 определяются интерполяцией.
2 Для гравелистых, крупных песчаных и пылевато-глинистых грунтов с показателем текучести IL < 0,2 определение сопротивлений производится по результатам опытных работ. Для предварительной оценки сопротивления основания под нижним концом сваи по формуле () допускаются принимать γcR1 = 0,5.
6.3.5 При определении несущей способности буросекущихся и бурокасательных свай, воспринимающих сжимающую нагрузку в составе конструкций типа «стена в грунте», следует учитывать уменьшение трения грунта на боковой поверхности сваи, вызванное объединением сечений соседних свай в ряду.
Расчет несущей способности сваи в конкретных условиях.
Перед началом строительства дома из пеноблоков были проведены исследования грунта на глубине 3 метров. Результаты показали следующее распределение почв:
- 0-2 метра – суглинистые почвы;
- 2-3 метра – глинистые почвы.
Расчет несущей способности сваи по грунту зависит от параметров самой опоры. В соответствии со Строительными правилами «Свайные фундаменты» предположим первоначально ее длину 3 метра. Минимальный рекомендуемый диаметр для таких опор составляет 300 мм.
Исходя их геометрии и почвенных условий, можно рассчитать несущую способность сваи по ее торцевой части и боковой поверхности. Для этого высчитаем площадь нижнего конца опоры:
Sторца=3,14D2/4=3,13*0,3*0,3/4=0,07,
где D – диаметр круга. Следующий параметр, необходимый для определения несущей способности свай – периметр опоры:
U бок=2*3,14*R=2*3,14*0,15=0,94.
Исходя из перечисленного, несущая способность буронабивной сваи по грунту будет определяться по следующей формуле:
Pтор=0,7Pнорм*S=0,7*90*0,07=4,41т,
где Pтор – несущая способность по торцу сваи, 0,7 – общепринятый коэффициент по грунту, Pнорм – нормативная несущая способность (табличная величина из соответствующих справочников), S – площадь основания. Аналогично рассчитаем несущую способность буронабивной сваи по ее боковой поверхности:
Pбок=0,8*U*fiн*h,
где Pбок – несущая способность по боковой поверхности сваи, 0,8 – коэффициент по условиям работы сваи в почве, U – периметр боковой поверхности, fiн – сопротивление грунта воль боковой поверхности (также табличная величина, зависящая от вида грунта и глубины его расположения), h – высота того или иного слоя грунта, через который проходит свая. Подставляя известные и рассчитанные величины получим:
Pбок=0,8* (2,8*2 + 4,8*1)*0,942=7,8т.
Исходя из проведенных вычислений, можем выполнить определение несущей способности свай. Для этого достаточно суммировать Рбок и Ртор:
Р=Рбок+Ртор=4,41+7,8=12,21т.
То есть каждая свая с указанными выше параметрами в том грунте, который располагается в зоне строительства согласно нашему примеру, способна выдержать нагрузку в 12 тонн 210 кг. Исходя из этой величины, необходимо рассчитать необходимое и достаточное количество опор буронабивного фундамента. Для этого определим общую массу строения.
Пример расчета несущей способности свай
Вес дома определяется как сумма веса всех входящих в него частей – перекрытий, перегородок, стен, стропильной системы, кровельного материала, переменной нагрузка от снега и ветра, массы отделки снаружи и внутри строения, а также предполагаемой к установке в доме мебели и бытовой техники. Предположим, что посчитав все искомые величины, получили общую массу строения, равную 124 тонны.
Следующий необходимый параметр – длина стен и перегородок, под которыми предполагается установка свай. Данная величина позволит распределить опоры дома равномерно с равным шагом. Предположим, что длина стен составила 29 метров. Тогда нагрузка на 1 п.м. будет определяться по формуле:
Q=124/29=4,3 т.
Шаг установки опор определим как отношение несущей способности сваи на величину Q:
L=P/Q=12,21/4,3=2,8
Используя полученные данные, рассчитаем и количество опор буронабивного свайного фундамента через отношение периметра стен к шагу установки опор:
N=29/2,8=10,3.
Принимаем ближайшее большее количества для получения определенного запаса прочности фундамента.
Таким образом, даже не обладая необходимым инженерным строительным образованием можно самостоятельно рассчитать несущую способность свай фундаментов того или иного вида, а также шаг установки опор и их количество. Необходимо это и для контроля работ, проводимых нанятой строительной бригадой, и для предварительного экономического расчета расходов на строительство основания дома.
Конкретные цифры для расчётов
В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2, это усреднённый показатель для грунтов российской средней полосы.
Исходные данные для расчёта свайных фундаментов
Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:
- строения из бревна или бруса 3 м;
- сооружения каркасного либо сборно-щитового типа 3 м;
- здания с несущими стенами из облегчённых блоков 2,5 м;
- дома из кирпича и полнотелых бетонных блоков 2 м;
- монолитные сооружения 1,7 м.
Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.
Вес конструкций и частей зданий
Для сбора весов допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.
Предпочтительный ориентир при отсутствии точной информации максимальное значение.
Стены :
- кирпичные 600-1200кг\м2;
- бревенчатые 600 кг\м2;
- газо- и пенобетонные 400-900 кг\м2;
- каркасные и панельные 20-30 кг\м2.
- листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
- листы асбоцементные 60-80 кг\м2;
- рубероид и другие мягкие покрытия 30-50 кг\м2.
Перекрытия:
- деревянные с утеплителем 70-100 кг\м2;
- цокольные с утеплителем 100-150 кг\м2;
- монолитные армированные 500 кг\м2;
- плитные пустотелые 350 кг\м2.
Конструктивные особенности свайного фундамента
Винтовой фундамент состоит из двух конструктивных элементов — свайных опор и их обвязки (ростверка). Опоры передают нагрузку, исходящую от здания, на грунт, минуя поверхностные низкоплотные пласты земли и перенося вес дома на глубинную, уплотненную почву.
В зависимости от схемы размещения свай, выделяют два типа винтовых фундаментов:
- с последовательным расположением опор — сваи размещаются на равноудаленном расстоянии друг от друга по периметру внешних и внутренних стен дома;
- с расположением в виде свайного поля — опоры равномерно распределены по всей площади здания.
Исходя из схемы расположения свай выбирается способ их обвязки. Для последовательных свай применяются ленточные ростверки, тогда как сваное поле обвязывается сплошным, плитным ростверком.
Ростверк винтового фундамента выполняет три функции:
- равномерно распределяет между опорами вес дома;
- выступает в качестве опорной поверхности для цокольного перекрытия;
- увеличивает устойчивость свай в грунте.
Устойчивость опор достигается за счет того, что сваи соединяются между собой и начинают работать как единая конструкция, что дает повышенное сопротивление к опрокидывающим нагрузкам и защищает опору от крена, который может произойти с одиночной сваей.
В зависимости от материала, ростверк на сваях может быть монолитным (железобетон) из бруса либо швеллера. Для строительстве тяжелых домов предпочтительна железобетонная обвязка винтового фундамента, для легких домов — брусовая.
Типы используемых свай
Используемые в фундаментном строительстве винтовые сваи отличаются типом лопастей и диаметром:
- сваи ∅ 57 мм — применяются для возведения легких заборов и навесов;
- сваи ∅ 57 мм — пригодны для возведения легких вспомогательных помещений (сараев, беседок) и тяжелых заборов;
- сваи ∅ 89 мм — используются для каркасных домов, гаражей и одноэтажных построек из легких материалов;
- сваи ∅ 108 мм — имеют высокую несущую способность по материалу (до 6 тонн), позволяют строить дома высотой 1-2 этажа из бруса, сруба, пенобетона.
В малоэтажном строительстве применяются широколопастные сваи, соотношение диаметра ствола и лопастей в которых превышает 1,5.
Пример расчета несущей способности свайного отдельно стоящего фундамента
Рассчитать свайный фундамент под колонну промышленного здания на действие центральной нагрузки N
= 1,0 МН. Материал ростверка — бетон класса В25 с расчетным сопротивлением осевому растяжениюRbt = 1,05 МПа. Глубина заложения подошвы ростверка по конструктивным соображениям принята равнойh = 0,8 м. Грунтовые условия строительной площадки: 1 — песок пылеватый (γ1= 0,0185 МН/м 3 ,h1 = 3,6 м,E1 = 15 МПа); 2 — супесь пластичная (γ2= 0,0195 МН/м 3 ,h2 = 1,7 м;Е2 =17 МПа); 3 — песок плотный (γ3=0,0101 МН/м 3 ,h3 = 2,2 м,E3 = 32 МПа);4 — суглинок тугопластичный (γ4 =0.01 МН/м 3 ,h4 =3,4 м,E4 =30 МПа).L/H—5,1.Решение.
Для заданных грунтовых условий проектируем свайный фундамент из сборных железобетонных свай марки С5,5-30, длинойL = 5,5 м, размером поперечного сечения 0,3×0,3 м и длиной острияl = 0,25 м. Сваи погружают с помощью забивки дизель-молотом.
Найдем несущую способность одиночной висячей сваи, ориентируясь на расчетную схему, показанную на рис. 6.1, а
и имея в виду, что глубина заделки сваи в ростверк должна быть не менее 5 см.
Рис. VI.1
Площадь поперечного сечения сваи A
= 0,3·0,3 = 0,09 м 2 , периметр сваи
По табл. 1.18(Приложение I) при глубине погружения сваи 6,5 м для песка мелкого, интерполируя, найдем расчетное сопротивление грунта под нижним концом сваи R =
2,35МПа.
По табл. 1.18(Приложение I) для свай, погружаемых с помощью дизель-молотов, находим значение коэффициента условий работы грунта под нижним концом сваи γcR
=1,0 и по боковой поверхностиγcf =1,0.
Пласт первого слоя грунта, пронизываемого сваей, делим на два слоя толщиной 2 и 0,8 м. Затем для песка пылеватого при средних глубинах расположения слоев h1
= l,8 м иh2 = 3,2 м, интерполируя, находим расчетные сопротивления по боковой поверхности сваи, используя данные табл. 1.19(Приложение I):f1 = 0,0198 МПа,f2 = 0,0254 МПа.
Для третьего слоя грунта при средней глубине его залегания h3
= 4,45 м по этой же таблице для супеси пластичной с показателем текучестиIL = 0,6, интерполируя, находимf3 = 0,0165 МПа.
Для четвертого слоя при средней глубине его расположения h4
= 5,775 м для песка мелкого находимf4 = 0,041б МПа.
Несущую способность одиночной висячей сваи определим по формуле (6.4)
Ф=
1 =0,364 МН.
Расчетная нагрузка, допускаемая на сваю по грунту, составит:
F
= 0,364/1,4 = 0,26 МН.
В соответствии с конструктивными требованиями зададимся шагом свай, приняв его равным а = 3b
= 3·0,3 = 0,9 м. Далее определим требуемое число свай:
Окончательно примем число свай в фундаменте равным 4 и разместим их по углам ростверка.
Найдем толщину ростверка из условия (8.8):
По конструктивным требованиям высота ростверка должна быть не менее hp
= 0,05+ 0,25 = 0,3 м, что больше полученной в результате расчета на продавливание. Следовательно, окончательно примем высоту ростверка равной 0,3 м.
Расстояние от края ростверка до внешней стороны сваи в соответствии с конструктивными требованиями назначим равным lр
= = 0,3·30+5=14 см, примем его окончательно, кратным 5 см, т. е.lp = 15 см. Расстояние между сваями примем равным:l =3b = 0,9 м.
Конструкция ростверка и его основные размеры показаны на рис. VI.1, б.
Найдем вес ростверка G3
= 0,025·0,3·1,5·1,5 = 0,0169 МН и вес грунта, расположенного на ростверке,Gгр = 0,5·1,5·1,5 ·0,0185 = 0,0208 МН.
Определим нагрузку, приходящуюся на одну сваю, по формуле:
Найдем вес свай:
G1
= 4 (5,5·220·10 + 50·10) = 50800 H = 0,0508 МН.
Вес грунта в объеме АБВГ
(см. рис. 6.1):
Вес ростверка был найден ранее: G3
=0,0169 МН.
Давление под подошвой условного фундамента:
По табл. 1.12(Приложение I) для песка мелкого, на который опирается условный фундамент, с коэффициентом пористости е
= 0,598 найдем значение удельного сцеплениясп = 0,003 МПа.
По табл. 1.13(Приложение I) по углу внутреннего трения φn
= 34°, который был определен ранее, найдем значение безразмерных коэффициентов:Mγ =l,55,Mq =7,22 иМс =9,22.
Определим осредненный удельный вес грунтов, залегающих выше подошвы условного фундамента:
По табл. 1.15. (ПриложениеI) для песка мелкого, насыщенного водой, при соотношении L/H>4
находим значения коэффициентовγс1 = 1,3 иγс2 = 1,1.
По формуле (8.3) определим расчетное сопротивление грунта основания под подошвой условного фундамента:
Основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: Рср
= 0,276 МПа
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения:Учись учиться, не учась! 10546 – | 7960 – или читать все.
93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.